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Abstract

Most geodetic applications require the assembly and solution of linear equation systems. The BLAS (Basic Linear
Algebra Subprograms) and LAPACK (Linear Algebra Package) have established itself as quasi-standard for linear algebra
computational routines. The performance that can be achieved with a program making use of these routines is largely
dependent on the performance of the chosen BLAS and LAPACK library.

This article investigates the performance of several BLAS and LAPACK implementations on three common PC
architectures. A number of test computations have been made, using a program for spherical harmonic analysis with least
squares. Based on the results, recommendations for the optimal library for each architecture are made.
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1 Introduction
Most geodetic problems require a parameter estimation process. A current research field that involves the estimation of
certain parameters out of a large number of observations arethe gravity field recovery from satellite missions such as
CHAMP, GRACE, and in the future, GOCE, see eg. [Ditmar et al. 2002]. Another example is the computation of the
terrestrial reference frame out of GPS, SLR, VLBI and DORIS observations, described by [Altamimi et al. 2002].

A linear equation system of the structure

y = Ax, (1)

is commonly solved using least-squares estimation:

x̂ = (AT
A)−1

A
T
y = N

−1
b, (2)

wherey are the observations and̂x the estimated unknown parameters.A is commonly referred to as design matrix,
N as normal equation matrix, andb as right-hand-side vector.

The Basic Linear Algebra Subprograms (BLAS) are a standard for linear algebra routines. They are sorted into level
1 (scalar-vector and vector-vector operations), level 2 (matrix-vector operations), and level 3 (matrix-matrix operations)
routines. For example, the DGEMM routine is a double-precision (D) dense (GE - general) matrix-matrix multiplication.
It, or the DSYRK routine, which performs a matrix-matrix multiplication B = AT A or B = AAT , are usually used
for computing the normal equation matrixN in equation 2.

The Linear Algebra Package (LAPACK) is a standard for routines such as solving of linear equation systems, LU,
QR, and singular value decomposition. The solution of the positive-definite linear equation system in equation 2 can be
computed with the DPOSV routine (double-precision positive-definite solver).

Note that both BLAS and LAPACK are only standards, defining functionality and interfaces. The actual implemen-
tation is not standardised. Over the years, many implementations for different architectures or using different approaches
have been created. In many parameter estimation programs, most of the computational load will be performed by BLAS
and LAPACK routines. It is thus desirable to use the implementations that offer the best performance, in order to reduce
computation times.

This article has the objective of identifying the BLAS and LAPACK libraries that offer the best performance on
current popular computer architectures. To achieve this goal, a number of test computations were made, using three
different computer systems and five different BLAS and LAPACK implementations. All tests computations were made
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using a program for spherical harmonic analysis (SHA) usingleast squares, implementing equation 2. Based on the
results, a recommendation for the optimal BLAS and LAPACK implementation can be made.

The paper is organized as follows: Section 2 describes the methods used to assess the performance of the tested BLAS
and LAPACK libraries. Section 3 described the hardware and software used for the tests. In section 4, the results of the
computations are presented and discussed. Finally, in section 5 a summary is provided and conclusions are drawn.

2 Performance Assessment
As described in the previous section, most of the workload ina parameter estimation according to equation 2 is contained
in the dense matrix-matrix multiplication

N = A
T
A, (3)

and the solving of the linear equation system

b = Nx. (4)

The operation in equation 3 is performed by the DGEMM or DSYRKroutine of BLAS, the linear equation system in
equation 4 is solved by the DPOSV routine. Performance comparisons can be made by measuring the time spent in these
functions. A system-independent routine for measuring time is the OMP_GET_WTIME routine of OpenMP, a standard
for parallel programming on shared-memory computers ([OpenMP 2002]). A call to OMP_GET_WTIME returns a time
in seconds, the difference between two calls yields the timeelapsed between them.

While it is sufficient to compare different implementationsbased on their runtimes, it is desirable to be able to
compare the theoretical achievable and actually achieved performance. The ratio between achieved performanceR and
theoretical peak performanceRpeak is known as efficiency. A high efficiency is an indication of anefficient numerical
implementation.

Performance is measured in floating point operations per second, FLOPS, or FLOP/s. Current processors deliver an
Rpeak in the GFLOPS (109 FLOPS) range. TheRpeakof a system can be computed by

Rpeak = nCPU · ncore · nF PU · f, (5)

wherenCPU is the number of CPUs in the system,ncore is the number of computing cores per CPU,nF PU is the
number of floating point units per core, andf is the clock frequency.

The achieved performanceR can be computed as the number of floating point operations performed (known as flop-
count) divided by the time taken. For the DGEMM routine of BLAS, the number of floating-point operations is

nflop = 2mnk, (6)

with m being the number of rows of the first matrix,n being the number of columns of the second matrix, andk being
the number of columns of the first matrix and the number of rowsof the second matrix. The flop count of the DSYRK
routine is

nflop = m(m + 1)n, (7)

with n being the number of rows ofA, andm being the number of columns ofA and the number of rows and columns
of N.

All tests were done using SHALE, a program for spherical harmonic analysis using least squares. SHALE and
the parallelisation of it are described in great detail in [Wittwer 2006]. SHALE estimates spherical harmonic potential
coefficients out of gravity potential values. The estimation is performed as in equation 2, using the DGEMM/DSYRK
and DPOSV routines of BLAS and LAPACK. SHALE is available fordownload from the author’s website,http:
//www.lr.tudelft.nl/psg→ Staff→ Tobias Wittwer→ personal homepage. The time spent by the DGEMM
routine, as well as the performance and efficiency achieved by it, and the time spent by the DPOSV routine, will be used
to judge the performance of the various BLAS and LAPACK implementations. DGEMM performance is usually used as
benchmark for BLAS performance, as other BLAS routines (such as DSYRK) also make use of DGEMM.

3 Test Setups
The goal of the tests was to find the best BLAS and LAPACK libraries for the most popular computer architectures in use.
The last years have seen an almost complete move away from RISC-based workstations and supercomputers to personal
computer (PC) architectures. The ever-increasing performance demands of PC software, as well as the race between
the two manufacturers AMD and Intel, have led to a performance gain that the traditional architectures for numerical
computing could not follow. Even the high performance computing field now mostly uses x86-family CPUs, due to their
lower costs and higher performance when compared to RISC processor families such as MIPS, UltraSPARC and Alpha.
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system nCPU ncore nFPU f Rpeak

Opteron 2 2 3 2.4 GHz 28.8 GFLOPS
Pentium D 1 2 2 3 GHz 12 GFLOPS

Core 1 2 4 2.4 GHz 19.2 GFLOPS

Table 1: Theoretical peak performanceRpeak of the systems tested, computed according to eq. 5.

As a consequence, only x86-family CPUs were used in the testsdescribed in this article. There are today two
manufacturers controlling the x86 processor market, AMD and Intel. Both offer an almost endless variety of processor
models, from low-voltage CPUs for notebook computers over low-cost models for office applications to multi-CPU
capable designs for servers and “Extreme”-dubbed high-endprocessors for gamers.

This huge array of choices can be narrowed down to three architectures that are of importance in the field of numerical
computing:

• AMD’s “Hammer” architecure, so called of the codenames “Sledgehammer” and “Clawhammer” of its first models,
the official designation is “K8”. These are AMD’s 64-bit processors. They are available as Athlon aimed at the
consumer market, and Opteron aimed at the workstation and server market. Only Opterons are available in multi-
CPU capable versions.

• Intel’s “Netburst” architecture, as used in all Pentium 4 processors. The Netburst architecture has been designed
for high CPU clock speeds. Even though this architecture is not further developed, Netburst-based CPUs are still
produced and still offer the highest clock frequencies available. The multi-CPU capable derivatives are called Xeon.

• Intel’s “Core” architecture, the replacement of the Netburst architecture. The Core architecture has been developed
out of the successful Pentium M design, with ancestry datingback to the Pentium Pro. While featuring lower
clock frequencies than Netburst-based CPUs, they are knownfor their high efficiency. Once again, the multi-CPU
capable versions, aimed at the server and workstation market, are sold under the Xeon name.

For each architecture, one representative CPU was chosen. Because of their performance benefit, only dual-core CPUs
were taken into consideration. The final choice was:

• A system equipped with two AMD Opteron 280 CPUs. The Opteron 280 is a dual-core CPU clocked at 2.4 GHz.
Each core has 1 MB of L2 cache. This system is referred to as theOpteron system.

• A system equipped with an Intel Pentium D 830 CPU. The PentiumD is the dual-core version of the Pentium 4.
The Pentium D 830 is clocked at 3 GHz and has 1 MB of L2 cache per core. This system is referred to as the
Pentium D system.

• A system equipped with an Intel Core 2 Duo E6600 CPU. This dual-core representative of the Core architecture is
clocked at 2.4 GHz and has 4 MB of L2 cache. This system is referred to as the Core system.

All CPUs are 64-bit capable and were run with 64-bit Linux operating systems, as well as 64-bit compilers. The
Intel C/C++ (icc) and Fortran (ifort) compilers in version 10.0.025 were used. These are known to generate very efficient
code on both AMD and Intel processors. All libraries were compiled with -O3 and -xW (for AMD) or -xP (for Intel)
optimisation switches.

Five common and well-known BLAS and LAPACK implementationswere tested:

• The reference BLAS and LAPACK (in version 3.1.1) libraries are reference implementations of the BLAS [Lawson et al. 1979]
and LAPACK [Anderson et al. 1999] standard. These are not optimised and not multi-threaded, so not much per-
formance should be expected. These libraries are availablefor download athttp://www.netlib.org/blas
andhttp://www.netlib.org/lapack.

• The Automatically Tuned Linear Algebra Software, ATLAS [Whaley et al. 2005], in version 3.6.0. During compile
time, ATLAS automatically choses the algorithms delivering the best performance. ATLAS does not contain all
LAPACK functionality; it can be downloaded fromhttp://www.netlib.org/atlas.

• The Goto BLAS in version 1.15, an implementation of the level3 BLAS aimed at high efficiency [Goto et al. 2006].
Since this is a BLAS-only library, the LAPACK reference implementation was used with it. The Goto BLAS is
available for download fromhttp://www.tacc.utexas.edu/resources/software.

• The AMD Core Math Library (ACML) in version 3.6.0. This is AMD’s implementation of the BLAS and LAPACK
standards. Other functionality is offered as well, such as vectorised mathematical routines. The ACML is available
athttp://developer.amd.com/acml.jsp.

• The Intel Math Kernel Library (MKL) in version 9.1.021. Intel’s implementation of the BLAS and LAPACK
standard provides further functionality, such as fast-fourier transform (FFT) and vectorised mathematical routines.
A version for non-commercial use can be downloaded from Intel’s website,http://www.intel.com.
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4 Results and Discussions
All tests were performed with SHALE, computing a spherical harmonic analysis up to degree 50, which results in 2,601
unknown potential coefficients. 16,200 potential values were used as observations.

The first test was to assess the singlethreaded DGEMM performance of the five libraries. Singlethreaded performance
is of interest if either only single-processor, single-core systems are used, or if parallelism is achieved by some other
method than multithreading, such as message with with MPI orPVM. For the Goto BLAS and the MKL, the number
of threads was manually set to 1. As ATLAS and the ACML providesinglethreaded libraries, these were used. The
reference BLAS is not threaded, so no special precautions had to be taken.
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Figure 1: Singlethreaded DGEMM performance in GFLOPS for Opteron (top), Pentium D (middle), and Core (bottom)
systems.

Figure 1 shows the resulting performance for all three systems and all five libraries. As expected, the non-optimised
reference BLAS implementation offers only poor performance. The best performance is achieved by the Goto BLAS,
on all three systems. The vendor-specific libraries (ACML for the Opteron system, MKL for the Pentium D and Core
system) are only slightly slower. Both ATLAS and MKL delivergood performance on the Opteron system. On the Intel
systems though, ATLAS and ACML deliver significantly less performance than Goto BLAS and MKL.

The second test aimed at testing multithreaded DGEMM performance. The maximum sensible number of threads
(four on the Opteron system, two on the two Intel systems) were used, with multithreaded version of all libraries. The
reference BLAS results will not differ from those obtained in the previous test, as the reference BLAS is not parallelised.
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Figure 2: Multithreaded DGEMM performance in GFLOPS for Opteron (top), Pentium D (middle), and Core (bottom)
systems.

The results are shown in figure 2. They differ little from the previous test.Once again, the Goto BLAS is the fastest,
with the respective vendor libraries a close second. Compared to the singlethreaded tests, ATLAS performs less well.
The multithreaded implementation does seem to be less efficient than the singlethreaded library.

Figure 3 shows the corresponding efficiencies. Both Intel systems achieve efficiencies close to 90% with the Goto
BLAS and the MKL. The Opteron system’s efficiency is around 60% - a result of the Opteron processor design. It has
only one load/store unit, while the Core 2 has a dedicated load and store unit each.
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Figure 3: Multithreaded DGEMM efficiency in % for Opteron (top), Pentium D (middle), and Core (bottom) systems.

The final test was run to compare the performance of the various LAPACK implementations. Note that the Goto
BLAS does not contain LAPACK routines, so it was used together with the reference LAPACK. LAPACK performance
is mostly dependent on the performance of the underlying BLAS implementation. The linear equation system with 2601
unknowns was solved using LAPACK’s DPOSV routine. Figure 4 shows the resulting runtimes.

0 2 4 6 8 10

Ref BLAS/LAPACK
ATLAS
Goto BLAS/LAPACK
ACML
MKL

C
o

re
P

en
ti

u
m

 D
O

p
te

ro
n

Figure 4: Multithreaded DPOSV runtimes in seconds for Opteron (top), Pentium D (middle), and Core (bottom) systems.

The reference BLAS/LAPACK combination clearly requires the most runtime, a result that’s not surprising consid-
ering LAPACK performance depends on BLAS performance. The Goto BLAS/reference LAPACK combination is the
fastest on all systems, closely followed by the vendor specific libraries (ACML on AMD, MKL on Intel). ATLAS is
slightly slower, and once again MKL fares better on the Opteron system than ACML on the Intel systems.

5 Summary and Conclusions
The goal of the tests described in this article was to identify the optimal BLAS and LAPACK libraries for the most
important PC architectures, AMD Hammer, Intel Netburst, and Intel Core. Performance was assessed using the DGEMM
routine for dense matrix-matrix multiplication, and the DPOSV routine for the solving of linear equation systems.

The results clearly showed that the Goto BLAS offers the bestperformance on all systems. It can be combined with
the reference LAPACK implementation to provide a very fast BLAS/LAPACK library. The respective vendor libraries
(AMD ACML and Intel MKL) deliver only slightly less performance. They are very good choices when their additional
functionality (vectorised math functions, FFT) is required. The ATLAS could only deliver comparable performance in the
singlethreaded test run on the Opteron system, but is otherwise significantly slower. Use of the reference BLAS should
be avoided, as it is not optimised and thus delivers very poorperformance.
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