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Abstract 
For combination with terrestrial measurement methods, GPS-derived coordinates and baselines 
have to be transformed into a local coordinate system. An alternative using a direct transformation 
between two Cartesian coordinate systems is described and implemented here. It consists of 1) a 
preliminary step of computing initial values for the rotation parameters using the Procrustes 
algorithm, and 2) an eight-parameter transformation that takes different horizontal and vertical scale 
factors in the local system into account. It does not account for continuously varying scale factors 
that are the result of conformal mapping or earth curvature and is thus limited to short distances. 
The approach is illustrated using a numerical example. 
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Introduction 
 
GPS baseline vectors and their respective variance-covariance matrices have been firmly 
established as an observation type in surveying. In order to use GPS baselines not only as slope 
distances (Kutoglu 2009), but with their full information as 3D vectors, they have to be transformed 
into the desired local coordinate system.  
 
The traditional method for estimating the necessary datum transformation parameters comprises 
several steps (Hoffmann-Wellenhoff et al. 1997), as shown in figure Figure 1: 
 
1. Converting local conformal mapping coordinates (n,e) and ellipsoidal heights h, i.e. the triplet 
(n,e,h), of the common points to geodetic coordinates (λ,φ,h), using the inverse mapping equations 
for the local coordinate system. 
 
2. Converting geodetic coordinates to geocentric Cartesian coordinates (x,y,z), using the ellipsoidal 
parameters associated with the geodetic coordinates. 
 
3. Estimating seven similarity transformation parameters ( ), , , , , ,x y z sα β γ∆ ∆ ∆  between the two 

geocentric Cartesian coordinate systems, using three or more common points in both systems. 
 
Step 1 requires that the inverse mapping equations for converting (n, e) to (φ, λ) must be available 
to carry out the rigorous conversion in Step 2. If the mapping equations are not available than the 
triplet (n, e, h) can be used as local Cartesian coordinates within certain approximations.   The first 
and second steps can be omitted if the local Cartesian coordinate system is not tied to the geodetic 
frame. Such systems may be encountered at construction site surveys and other small-scale 
engineering projects.  
 



 
Figure 1: Flowchart of traditional method for datum transformation 

 
The seven parameters required for the transformation are: The three translations (∆x,∆y,∆z) 

between the center of origin of the two coordinate systems in the translation vector 
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and the three rotation angles (α,β,γ) required for the rotation matrix R, 
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and the scaling parameter s. The transformation is then computed as 
 1, 2,j js= +y t Ry  (3) 

where 1, jy  is the vector of coordinates of point j in the local (target) system and 2, jy  is the vector of 

coordinates of point j in the GPS (source) system. 
 

If geodetic coordinate systems are involved, it is usually assumed that the two global 



Cartesian coordinate systems are close to identical (CTI). This makes it possible to replace the 
rotation matrix R in (2) with a simplified version, under the assumption of cos 1ϑ =  and sinϑ ϑ= : 
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Estimating the transformation parameters using a traditional CTI and non-CTI seven-

parameter transformation requires iteration due to the non-linearity of the model. . Insufficiently 
accurate initial parameters might cause diverging iterations. In addition, the local Cartesian 
coordinates, (n, e, h), may require different scaling for horizontal position and height coordinates, as 
the horizontal position coordinates are usually the result of a conformal mapping with associated 
scale variation (Snyder 1987). In order to overcome these problems, a two-step procedure for 
transforming GPS baselines into local coordinate systems is proposed: 
 
1. Computation of initial values for the rotation parameters (α,β,γ) using the Procrustes algorithm. 
 
2. Refinement of the transformation parameters, including different scaling parameters (,p hs s ) for 

horizontal position and height, in a strict non-CTI eight-parameter datum transformation. 
 
The Procrustes Algorithm 
 
The Procrustes algorithm is an effective tool for estimating datum transformation parameters. It 
does not require initial values for the unknown parameters or an iterative procedure. The use of the 
Procrustes algorithm for the transformation between two matrices, with optimality in a least-squares 
sense, dates back to Green (1952) and Schönemann (1966). A recommended starting point for a 
more detailed introduction to the Procrustes algorithm in the context of datum transformations is 
Grafarend and Awange (2003). The algorithm has recently been used for datum conversion by 
(Felus and Burtch 2009). 
 

We use the Procrustes algorithm to compute the initial values for the seven transformation 
parameters ( ), , , , , ,x y z sα β γ∆ ∆ ∆ . More precisely, it computes the translation vector t in (1), the 

rotation matrix R in (2) and the scaling parameter s for a transformation according to the functional 
model in (3). 
 

It makes use of 3n ≥  common points, where 1Y  is the matrix of coordinates in the target 

system and 2Y  is the matrix of coordinates in the source system. The quantities R, t, and s are 

computed according to the following steps: 
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2. centering matrix 
1 T

n n
= −C I 11 , where nI is the n n×  Identity matrix,  

    and 1  is an 1n×  vector of 1's 
3. singular value decomposition ( )1 2 1 2 3Diag , ,T Tσ σ σ=Y CY U V  

4. rotation matrix T=R UV  



5. scaling factor 
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6. translation vector ( )1 2

1 T s
n

= −t Y Y R 1  , where again 1  is an 1n×  vector of 1's 

The values of (α,β,γ) that can be extracted from R are then used as initial values in the eight-
parameter transformation. 
 
Eight-Parameter Transformation 
 
Using the initial values computed in the previous step, it would be possible to compute a strict non-
CTI seven-parameter datum transformation according to the functional model in (3) with the 
rotation matrix from (2), without the intermediate steps shown in figure 1. This would however 
neglect, as has been mentioned above, that different scaling may apply for horizontal position and 
height coordinates. An eighth parameter is introduced to account for this: two different scaling 
parameters, ps  and hs , are used for respectively horizontal position and height. This yields an 

expanded functional model 
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with eight unknown parameters: ( ), , , , , , ,p hx y z s sα β γ= ∆ ∆ ∆x . 

The initial values for the three angles (α,β,γ) are extracted from the rotation matrix R 
obtained in the previous step: 
 
 0 3,1arcsinβ = R  (6) 
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Due to their linear relationship in the functional model, initial values for the other five parameters 
are not required. 
 

Using the design matrix A containing the linearized functional model, the transformation 
parameters are estimated by iterative least-squares as 
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with ɵ ix  being the result of the previous iteration, and the misclosure vector is 
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where it , iR , ,p is , and ,h is  are the values of the transformation parameters obtained in the previous 

iteration. The uterations continue until a suitable convergence criterion is met. Coordinates should 
be reduced to the centroid of the respective system to avoid numerical instabilities. 
 

Variance/covariance information about the points in the local system 1y  is easily added by 

means of a weight matrix 1
yy
−=P C , where yyC  is the covariance matrix for the 1y  coordinates, 

giving: 
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This information can also be added for points in the GPS system 2y  by expanding the vector of 
observations with the coordinates of these points and expanding the functional model accordingly 
(Leick 2004).  
 
Numerical Example 
 
In order to show the benefit of using an eight-parameter transformation, a small numerical example 
is provided. The transformation parameters and the subsequent transformation and residuals have 
been computed using a non-CTI seven-parameter transformation and eight-parameter 
transformation described above. The source coordinates were in the WGS84 Cartesian system, the 
target coordinates in UTM and a local height system. No errors were introduced in the identical 
points, so an exact transformation is possible except for numerical errors, scale variations caused by 
the UTM conformal mapping, and neglection of Earth curvature.  
 

Four common points were used (Table 1). In a first step, the initial values for (, ,α β γ ) were 
computed using the Procrustes algorithm. These were then used in two least-squares adjustments 
which estimated or eight transformation parameters respectively. Two iterations were required for 
the seven-parameter transformation, six for the eight-parameter transformation. A convergence 
criterion of 1.0e-12 was used for the observation misclosures in (10). 
 
Table 1: Coordinates of common points in meters, in WGS84 geocentric and UTM systems 

Point X Y Z east north height 
1 3924425.182935 300277.525061 5002122.827517 594445.966528 5760775.553531 40.0 
2 3923624.043922 300064.136909 5002772.460568 594274.683825 5761814.439030 50.0 
3 3923254.329225 300208.324036 5003001.110433 594438.582878 5762240.084165 10.0 
4 3924241.689316 300697.163336 5002215.396208 594874.849982 5760959.579904 20.0 

 
Table 2 lists the residuals after adjustment for both cases. As expected, introducing an additional 
scaling parameter for the heights significantly reduces all residuals. . It is noted that residuals up to 
2.5 mm remain in the horizontal position coordinates. These are a consequence of the conformal 
mapping condition implied with the UTM projection and cannot be modeled better by just one 
horizontal scale factor. For larger networks and using ellipsoidal heights the residual in height 
would become systematic even for the 8-parameter transformation due to the curvature of the 
ellipsoid. Such large or systematic residuals do not occur when the local target coordinate system is  
truly projection-free as encountered in many engineering applications. 
 
Table 2: Residuals of common points in millimeters and overall RMS per component. 

 7-parameter transformation 8-parameter transformation 



Point 
nr  er  hr  nr  er  hr  

1 -0.4   1.3 7.9 -0.8 1.5 0.2 
2 0.8 -1.7 -12.6 -0.5 -2.5 -0.1 
3 -0.8 1.6      9.5 0.4 1.5 0.1 
4 0.3 -1.2 -4.8   0.9 0.5 0.1 

RMS 1.2 3.0 18.3 1.4 3.3 0.2 
 

The values and a-posteriori standard deviations of the estimated transformation parameters 
can be found in table 3. A result of the introduction of the eighth parameter is the significantly 
improved precision of the translation vector elements and the rotation angles, which appear to 
absorb the scale inconsistencies. We also note the estimated horizontal scale factor very closely 
represents the average point scale factor of the UTM projection for the area. 
 
 
Table 3: Values and standard deviations of estimated transformation parameters. 

 7-parameter transformation 8-parameter transformation 
parameter value standard deviation value standard deviation 
 α [rad] -0.05955883 53 10−⋅  -0.05947360 51 10−⋅  
β  [rad] 0.66102242 69 10−⋅  0.66104844 63 10−⋅  
γ  [rad] 1.64868864 52 10−⋅  1.64863665 66 10−⋅  
x∆ [mm] 5941129496 4.2 5936732874 0.9 
y∆ [mm] 57822114538 4.2 57820796705 0.9 

z∆ [mm] -63629935763 4.2 -63563046747 0.9 
s [ ] 0.99970552 66 10−⋅    

ps [ ]   0.99970615 61 10−⋅  

hs [ ]   0.99865455 41 10−⋅  
 
Conclusions 
 
The method described and implemented here allows for the direct transformation of GPS 
coordinates into a local coordinate system using a two-step approach. The first step is required only 
for providing initial values for the rotation parameters, guaranteeing convergence of the iterative 
computation of the second step. The local coordinate system does not need to be tied to a global 
coordinate system, which makes it possible to use the full 3D information of GPS baselines even for 
small surveying networks. 
 

The functional model for the non-CTI coordinate transformation has been expanded with an 
eighth transformation parameter, a separate scaling parameter for heights. The numerical example 
showed that this additional parameter may be required to achieve sufficient accuracy in local 
coordinate systems that have differing horizontal and vertical scales, such as is the case with the 
UTM system and local height systems. 
 

Conformal mapping leads to continuously varying horizontal scale factors. Since the method 
implemented here estimates only one constant horizontal scale factor, it is limited to distances 
between the points where the scale variations are smaller than the required precision. In the case of 
UTM, distances need to be smaller than 5 km if sub-centimeter precision is desired. 
 

Matlab source code for both transformation steps is available, along with documentation and 
a sample data set. The files are posted on the author’s web site, http://www.wittwer.nl. 
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